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Abstract

A framework  for  automatic  generation  of human
competitive Corewar  programs  is presented.   The
authors  believe  this  approach  is  applicable  to
other  Corewar- like artificial chemistries.

Introduction

In  1984 the  first  Corewar  article  appeared  in  the
pages  of  Scientific  American  [Dewdney,  1984].
That  article  described  a  new  game  in  which
human  players  write  computer  programs  to  take
over  a  virtual  machine.    The  Corewar  game  has
spawned   many  important  artificial  life  systems:
The  Coreworld  [Rasmussen  et  al.  1990],  Tierra
[Ray, 1992], and  Avida  [Adami  and  Brown,  1994]
are  some of the best  known.  Corewar  itself is also
still popular  [Philaja,   2004; Birk, 2004].

Many  people  have  noticed  a  similarity  between
Corewar  programs  and  biological  viruses.
Natural  viruses,  however,  have  had  over  3 billion
years—during  which   an  estimated  1025 phage
infections  occurred  every  second—to  explore
genomic space [Pedulla  et  al, 2003;  Hendrix  et  al,
1999].   We  are  a  long  way  from  simulating  the
awesome power  of the biosphere. 

The  Corewar  language  is  extremely  “brittle”—
nearly  any  change  to  a  succesful  program  is fatal
—so  it  was  not  possible  to  produce  human
competive  programs  in  the  past.     It  is  also
difficult  to  engineer  a  new  virus  by  randomly
changing a few base-pairs.     In  this work  we have
decided  not  to  change  the  rules  of  Corewar  to
make  it  easier  to  evolve  these  programs  but
instead  have  decided  to  apply  better  ideas  and
more hardware.  

The Chemistry

The  current  Redcode  standard,  DRAFT94,  was
published  in  REC.GAMES.COREWAR  and
implemented  in  the  pMARS  software  [Ma  et  al,
1995].  Each  memory  cell of the “core”  consists of
an  instruction  [Table  1],  modifier  [Table  2],  and
two  operands  whose  interpretation  is determined
by  their  addressing  mode  [Table  3].   For  more
details  about  Redcode  please  consult  one  of  the
many introductory  documents.  Eg. The Beginners
Guide  to  Redcode  [Karonen,  2004]  More
information  can  also  be  found  in  the  pMARS
documentation. 

DAT terminate process 

MOV move from A to B  

ADD add A to B, result in B

SUB subtract A from B, result in B

MUL multiply A by B, result in B

DIV divide B by A, result in B if
A is not zero, else DAT

MOD divide B by A, remainder in B
if A is not zero, else DAT

JMP execute at A  

JMZ execute at A if B is zero

JMN execute at A if B is not zero

DJN decrement B, if B is not zero,
execute at A 

SLT skip if A is less than B 

SEQ
CMP

skip if A is equal to B

SNE skip if A is not equal to B

NOP no operation

SPL new task at A 

Table 1. Valid instructions.  Note: Instruction behavior can
depend on execution style:  biotic (2004) or abiotic (1994).



.A Instr. read and write A-fields

.B Instr. read and write B-fields

.AB Instr. read A-field of A-
instr. and B-field of B-instr.
and write B-field 

.BA Instr. read B-field of A-
instr. and A-field of B-instr.
and write A-field 

.F Instr. read both A&B fields of
A&B instr. and write to both
A&B fields (Ato A and B to B).

.X Instr. read both A&B fields of
A&B instr. and write to both
A&B fields (Ato B and B to A).

.I Instr. read and write Instr.,
Modifier, Modes, A & B fields

Table 2. Valid modifiers.  

# immediate

$ direct

@ indirect using B-field 

< predecrement indirect using B-
field 

> postincrement indirect using B-
field

* indirect using A-field

{ predecrement indirect using A-
field 

} postincrement indirect using A-
field

Table 3.  Valid addressing modes.

Seeding the Pool

Each  round  of  the  evolution  starts  out  with
seeding  the  pool,  this  is  done  by  running  the
”makepop”  tool.   Makepop  creates  a  new
individual  from  randomly  selected  Redcode
instructions  (the  individual's  DNA)  and  then
checks  to  see if it  can  pass  a  test  battle  against  a
random  individual from a benchmark  set.

The  code  generated  by  makepop  is  seeded  from
patterns  seen  in  human  coded  individuals.   The
theory  here  is to  emulate  natural  organisms.   In
nature  there  are  only a limited number  of working
combinations  of  proteins,  and  the  un-workable
proteins are suppressed through  various means.

The same is true  in Corewar,  wherein  we want  to
maximize  the  working  combinations  we  see  in
"nature"  (human  coded individuals), and  suppress
the  random  ones that  we don't  see.  To do this,  a
system  is  devised  which  is  based  on  instruction
distribution  tables—called  chains  in  the  following
discussion—which  are  calculated  from  successful
human  coded individuals. A chain might look like:

Start instruction:
   SEQ occurred    69 times (39.884%)
   MOV occurred    49 times (28.324%)
   SNE occurred    23 times (13.295%)
   SPL occurred    17 times (9.827%)
   ADD occurred     7 times (4.046%)
   SUB occurred     3 times (1.734%)
   JMZ occurred     3 times (1.734%)
   DIV occurred     1 times (0.578%)
   NOP occurred     1 times (0.578%)

2nd Instruction:
   If previous instruction was spl:
      SEQ occurred   771 times (60.613%)
      SNE occurred   170 times (13.365%)
      DAT occurred   137 times (10.770%)
      SPL occurred    69 times (5.425%)
      JMP occurred    36 times (2.830%)
      MOV occurred    34 times (2.673%)
      ADD occurred    16 times (1.258%)
      DJN occurred     6 times (0.472%)
      SUB occurred     3 times (0.236%)
      JMZ occurred     1 times (0.079%)

    If previous instruction was djn:
      DAT occurred   128 times (22.980%)
      SEQ occurred   127 times (22.801%)
      JMP occurred   100 times (17.953%)
      MOV occurred    50 times (8.977%)
      SNE occurred    46 times (8.259%)
      SPL occurred    38 times (6.822%)
      DJN occurred    21 times (3.770%)
      ADD occurred    11 times (1.975%)
      JMN occurred    10 times (1.795%)
      SUB occurred     6 times (1.077%)
      MUL occurred     2 times (0.359%)
      JMZ occurred     2 times (0.359%)

patterns  are  examined  up  to  5 instructions  deep,
which means the fifth instruction will look like:

 If 4 ins ago was spl:
   If 3 ins ago was spl:
     If 2 ins ago was spl:
       If 1 ins ago was spl:
         ADD occurred     1 times (50.000%)
         MOV occurred     1 times (50.000%)

So the fifth instruction would be ADD or a MOV.

In  addition  to the instruction  itself, valid  Redcode
has a  modifier  and  operands.   These are  tied only
to  the  current  instruction  to  keep  look  up  tables
reasonably sized. 



When  creating  the  tables  for  selecting  random
instructions,  a  group  of  successful  individuals
(obtained  from  Koenigstuhl's  infinite  LP  hill)  is
selected  and  converted  to the  format  that  exhaust
requires.   Then  a  program  called  statcode.pl  is
run.   It  counts every instruction, tallies all the start
instructions  it  sees,  makes  a  note  of  which
instructions  follow which  instructions,  and  tallies
which  modifiers  and  operands  are  seen  with  any
given instruction. The start  instructions are  tallied
separately to ensure  that  all individuals  start  with
a valid instruction.  The program  then  outputs  a C
source  file,  which  is  compiled  and  linked  into
makepop and client programs.

The source file defines several calls:

 get_start_instruction
 get_operands
 get_imod
 get_omod
 get_{second,third,fourth,fifth}_instruction

get_start_instruction  returns  an  instruction
selected  randomly  from  the  list  of  valid  start
instructions,  weighted  by  the  number  of
occurrences.  So in  the  above  example,  one  would
expect  nearly  40%  of our  start  instructions  to  be
SEQ, and  nearly 10%  to be SPL.

The following is a  source  snippet  from  makepop.c
showing  how  an  individual  is  filled  using  these
chains  (c  is  a  pointer  to  the  code  section  of  the
individual):

 getstartins(&(c[0]));
 op = c[0].in;
 getsecondins(&(c[1]),op);
 op2 = c[1].in;
 getthirdins(&(c[2]),op,op2);
 op3 = c[2].in;
 getfourthins(&(c[3]),op,op2,op3);
 op4 = c[3].in;
 getfifthins(&(c[4]),op,op2,op3,op4);
 for(i = 5; i < max_length; i++) {
    getfifthins(&c[i], 
              c[i - 1].in, 
              c[i - 2].in, 
              c[i - 3].in, 
              c[i – 4].in);
 }

A second pass would  then  be made  to match  each
of the instructions with operands  and  modifiers.

This  method  has  made  a  significant  difference  in
the  time  required  to  generate  a  viable  start
population.  The  instruction  calls  are  also used  to
suggest  mutations,  reducing  the  chance  of
destructive mutations  by using possibilities that  fit
chains  used  to  generate  the  individual.   Allowing
for  a  small  chance  that  we will change  some part
of the  instruction  based  on  the  chains  that  match
the individuals code.

Once the  pool is filled with  individuals,  the  server
program  master  starts.  Master  reads  all  the
generated  individuals,  the  benchmark  individuals,
then  shuffles  the  generated  individuals  into
species.  The  evolver  considers  a  species  to  be  a
group  of  individuals  in  the  pool  that  breed  only
with  other  members  of  their  group.  The
benchmark  typically  sits  around  6-12 individuals.
When  the  master  is  on-line  and  listening,  clients
starts  on  any  available  computer.  The  clients
contact  the master,  and  checks out  a section of the
pool for  which to calculate  scores.  Once the client
finishes calculating  the  initial  individual  scores,  it
returns  the  information  to  the  server  and  checks
out another  small section.

Once  all  the  individuals  have  an  initial  score
assigned,  the  server  begins sending  the  clients  the
completed pool.  The clients breed new individuals.
Any new individuals  that  exceed  the  score  of the
current  flimsiest  individual  in a  species are  copied
in over  that  individual, removing it from the pool.

The Evolutionary Process

The  "breeding"  process selects two individuals  of
the same species, one of the parents  is chosen to be
the  source.   After  each  instruction  is copied to the
child, there  is a chance the source will be swapped
to  a  different  parent  individual,  and  instructions
will  be  copied  from  that  parent  instead.  On
average  there  are  four  cross-overs  between
parents  in each child.  As well, there  is a chance of
mutation  for  every  instruction,  this  can  take  the
form  of  either  a  small  change  to  the  current
instruction,  dropping  this  instruction  completely,
or  adding  a  new  instruction.  Once  the  child  has
been  filled  with  code,  it  is  validated  against  a
random  benchmark  individual  to  ensure  it  is
worth  the  cycles  to  calculate  a  full  score.  If  it



passes, it will continue  as above, if the child scores
better  than  the  current  flimsiest,  it  replaces  it  in
the pool.

After  the  client  has  found  enough  improved
individuals, it returns  its pool to the server,  which
adds  the  improved  individuals  to  the  main  pool.
This will continue  until  someone stops the  master,
and  the  clients  exit  when  they  can  check-out  no
more work.

There is also a simple proxy server,  to allow clients
to  be  run  on  machines  that  don't  have  direct
access to the Internet.  The proxy checks out  work
(from  either  the  master,  or  another  proxy),  and
hands  it  out  to clients  that  connect  to it.  Once the
proxy  receives  enough  improved  individuals,  it
checks  them  back  into  the  main  server,  and
requests a new pool.

Master Clients

Proxy Clients

Proxy Clients

It  was  found  that  best  results  are  obtained  by
starting  the  validation  score  very  low,  and
ramping  it  up  as  the  baseline  score  of  the
individuals  improves.  When  most  individuals  are
capable  of  scoring  >50%  of  the  tie  barrier  (the
score  achieved  with  100%  ties),  the  validation
score  is  bumped  so  only  individuals  that  can
exceed  the  tie  barrier  will  have  their  score
calculated.  This  prevents  individuals  that  have  no
strong  offensive ability  from  breeding  out  all  the
very  offensive  individuals  from  the  pool,  as
offensive  seem  to  have  a  more  difficult  time
finding  improvements.  The  mutation  rate  is
started  quite  high,  about  60%  chance  per
instruction,  and  is  dropped  quickly  as  the
individuals  improve.  Towards  the  end,  the
mutation  rate  is typically held  somewhere  around
2%  chance per  instruction.  If the mutation  rate  is
not  dropped,  the mutation  rate  will cause the pool
to  flail  around  aimlessly and  never  converge.   If
the mutation  rate  is started  too low, there  will not
be enough  variation  in the  pool, and  it  is unlikely
to  find  optimizations.  The  typical  path  of  the

evolver  is to start  with low scores, quickly increase
as  we  approach  the  tie  barrier,  then  there  is  a
significant  slowdown  after  the  validation  score
bump  described  above.  Once  most  of  the
population  starts  to  shift  towards  more  offensive
individuals,  the  climb  upwards  starts  again.  This
will  continue  until  the  pool  converges  on  a
monoculture,  where  all  individuals  effectively use
the  same  tactics,  and  we  no  longer  find  further
improvements.  At  this  point,  the  pool  can  be
considered  done.

The  evolver  generally  runs  several  times  from  a
random  start  until  the  pool  converges  on  a
monoculture,  then  collect the top individuals from
the  finished  pools into a  new pool, and  re-run  the
evolver  hoping  for  further  improvements.  This
strategy  has  proved  to  be  quite  successful  in  the
past.  Typically  it  will  take  days  or  weeks  to  run
each  pool  to  completion  using  the  spare  CPU
cycles of a large cluster  of commodity PCs.

The Evolutionary Environment

As  mentioned  earlier  all  individuals  are  tested
against  a  benchmark.  The  specific  individuals  in
the   benchmark  are  essential  to  the  evolution  of
human  competitive programs.    It  usually contains
a  set  of  the  best  scoring  individuals  from
Koenigstuhl’s infinite hill.

If  the  number  of individuals  in  the  benchmark  is
too low the  evolution  quickly  reaches  a  dead-end,
because  of  the  appearance  of  individuals  which
overpower  a  single  individual  of  the  benchmark.
Such  individuals,  called  in  the  following
“kryptonites”,  inhibit  further  evolution  of  the
main  pool  because  of  their  success  against  the
vulnerable individual in the benchmark.   But in all
cases they are not viable in tournament  play. 

The  effect  is less pronounced  as  more  individuals
are  used  in  the  benchmark.  The  downside  is that
the  evolution  then  needs  more  computing  power
and  the  time  until  the  pool  converges  on  a
monoculture  significantly  increases.  One  can
slightly  suppress  the  kryptonite  effect  by  the
careful  choice of different  species and  sub-species
for  an even benchmark.



There  are  still further  approaches in progress how
to  break  the  deadlock  provoked  by  cryptonides
while using  a  benchmark  with  a  small  amount  of
individuals. 

Evolution and a Step Beyond

An example  of the  evolutionary  process described
in  this  article  is  the  individual  “189602-1978-
xt642-2-eve15”.   This program  was evolved using
optiMAX’s LP  hill benchmark.   It  showed a  very
interesting  scoring  pattern  on  SAL’s  LP  hill.
Although  it  is a  very  defensive species it's  able  to
beat  some  other  defensive  species  (namely
replicators) quite nicely.  

A closer  look  at  the  code  showed  the  individual
executes  just  8  instructions.  The  remaining  192
lines  are  not  in  use  and  seems  to  act  as  a  huge
decoy.  The  'active'  part  of  the  individual,  with
some additional comments, is shown below:

mov.i  $    7 , {    2  ;boot the imp
spl.a  $    5 , # 1867  ;split behind impgate
spl.ab $ 2317 , $  931  ;launch booted imp
djn.a  #   -1 , < -145  ;imp-gate / djn-train
djn.f  #   -1 , < -145  ;
jmp.ba #   21 , <  -43  ; ->safety instr.?
mov.b  # 2667 , $    8  ;useless instruction
mov.i  #   -1 , $    1  ;the imp instruction

As unique  the  scoring  pattern  is as  interesting  is
the  evolved  species,  because  it  contains  just  two
imps and  an  imp-gate. On a deeper  view it unfurls
a  quite  barbaric  brilliancy:  A strategy  which  was
never  seen  in  a  human  coded  individual  before.
Both  imps  are  running  fast  enough  to  being  not
caught  by  a  coreclear  or  a  scanner  wipe on  their
way  through  the  core.  And  if  they  overwrites  an
opponent  they convert  it into an imp. And they are
even fast  enough  to catch  the  papers  while still in
process of replicating themselves. At the end of all
this waits the imp-gate terminating  every imp that
approaches.  This means  if the two imps were  able
to  convert  all  processes  of  the  paper  into  imps
while running through  the core the paper  will lose.

The next  step  after  understanding  the  species was
to  write  a  human  coded  version.  For  some
additional  points a quick scanner  was added  which
works also as a decoy; the code is at  right:

;redcode-lp
;name Eve 15
;strategy No humans were used in the creation
;strategy of this strategy
;author bvowk + Fizmo
;assert 1

;------>qscan constants
zero    equ     qbomb
qtab3   equ     qbomb
qc2     equ     ((1+(qtab3-qptr)*qy) %
                 CORESIZE)
qb1     equ     ((1+(qtab2-1-qptr)*qy) %
                 CORESIZE)
qb2     equ     ((1+(qtab2-qptr)*qy) %
                 CORESIZE)
qb3     equ     ((1+(qtab2+1-qptr)*qy) %
                 CORESIZE)
qa1     equ     ((1+(qtab1-1-qptr)*qy) %
                 CORESIZE)
qa2     equ     ((1+(qtab1-qptr)*qy) %
                 CORESIZE)
qz      equ     2108
qy      equ     243

;------>qbomb constants
qoff    equ     -87
qstep   equ     -7
qtime   equ     14

;------>eve 15 constants
iAwa    equ     4174
train   equ     7903

;------>eve 15 code
pGo     mov.i   imp,            *2
        spl     imp
        spl     iAwa
        djn.a   #0,             <train
        djn.f   #0,             <train
        jmp.ba  #0,             <train
imp     mov.i   #-1,            1

        for     51
        dat     0,              0
        rof

;------>qscan code
qbomb   dat     >qoff,          >qc2
        dat     0,              0
        dat     0,              <qb1
qtab2   dat     0,              <qb2
        dat     0,              <qb3
        for     16
        dat     0,              0
        rof
        dat     zero - 1,       qa1
qtab1   dat     zero - 1,       qa2
        for     42
        dat     0,              0
        rof

qgo sne   qptr+qz*qc2, qptr+qz*qc2+qb2
    seq   <qtab3,  qptr+qz*(qc2-1)+qb2
    jmp   q0, }q0

    sne   qptr+qz*qa2, qptr+qz*qa2+qb2
    seq   <qtab1, qptr+qz*(qa2-1)+qb2
    jmp   q0, {q0

    sne   qptr+qz*qa1, qptr+qz*qa1+qb2
    seq   <(qtab1-1), qptr+qz*(qa1-1)+qb2
    djn.a q0, {q0
    sne   qptr+qz*qb3, qptr+qz*qb3+qb3



    seq   <(qtab2+1), qptr+qz*(qb3-1)+(qb3-1)
    jmp   q0, }q1
    sne   qptr+qz*qb1, qptr+qz*qb1+qb1
    seq   <(qtab2-1), qptr+qz*(qb1-1)+(qb1-1)
    jmp   q0, {q1

    sne   qptr+qz*qb2, qptr+qz*qb2+qb2
    seq   <qtab2, qptr+qz*(qb2-1)+(qb2-1)
    jmp   q0

    seq   >qptr, qptr+qz+(qb2-1)
    jmp   q2, <qptr

    seq   qptr+(qz+1)*(qc2-1),
          qptr+(qz+1)*(qc2-1)+(qb2-1)
    jmp   q0, }q0

    seq   qptr+(qz+1)*(qa2-1),
          qptr+(qz+1)*(qa2-1)+(qb2-1)
    jmp   q0, {q0

    seq   qptr+(qz+1)*(qa1-1),
          qptr+(qz+1)*(qa1-1)+(qb2-1)
    djn.a q0, {q0
    jmz.f pGo, qptr+(qz+1)*(qb2-1)+(qb2-1)

;------>qbomb code

q0      mul.b   *2,             qptr
q2      sne     {qtab1,         @qptr
q1      add.b   qtab2,          qptr
        mov     qtab3,          @qptr
qptr    mov     qbomb,          }qz
        sub     #qstep,         qptr
        djn     -3,             #qtime
        jmp     pGo

        end qgo

Conclusion

The  “brittleness”  of  Corewar's  Redcode  has
prevented  significant  evolution  of  competitive
Redcode  programs  in the  past.   With  advances  in
computer  hardware  and  by  seeding  initial
populations  of  evolving  programs  with  patterns
seen  in  human  coded  individuals,  we  can
significantly  decrease  the  time  required  to
generate  a viable start  population.   Also the use of
a  dynamic  validation  score  and  mutation  rate
during  the  "breeding"  process  assists  the  pool's
convergence on a human  competitive monoculture.
Together  with  a  well chosen  benchmark  it  is now
possible  to  efficiently  evolve  new  and  unique
“species” that  are  effective in tournament  play.   
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