
An Evolutionary Approach Generates Human Competitive Corewar Programs

Barkley Vowk1, Alexander (Sasha) Wait 2, Christian Schmidt 3

1University of Alberta, Department of Mathematical and Statistical Sciences, Edmonton, AB T6G2E1, Canada
2Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA

3Glasower Damm 4R, 15831 Mahlow, Germany
fizmo@corewar.info

Abstract

A framework for automatic generation of human
competitive Corewar programs is presented. The
authors believe this approach is applicable to
other Corewar- like artificial chemistries.

Introduction

In 1984 the first Corewar article appeared in the
pages of Scientific American [Dewdney, 1984].
That article described a new game in which
human players write computer programs to take
over a virtual machine. The Corewar game has
spawned many important artificial life systems:
The Coreworld [Rasmussen et al. 1990], Tierra
[Ray, 1992], and Avida [Adami and Brown, 1994]
are some of the best known. Corewar itself is also
still popular [Philaja, 2004; Birk, 2004].

Many people have noticed a similarity between
Corewar programs and biological viruses.
Natural viruses, however, have had over 3 billion
years—during which an estimated 1025 phage
infections occurred every second—to explore
genomic space [Pedulla et al, 2003; Hendrix et al,
1999]. We are a long way from simulating the
awesome power of the biosphere.

The Corewar language is extremely “brittle”—
nearly any change to a succesful program is fatal
—so it was not possible to produce human
competive programs in the past. It is also
difficult to engineer a new virus by randomly
changing a few base-pairs. In this work we have
decided not to change the rules of Corewar to
make it easier to evolve these programs but
instead have decided to apply better ideas and
more hardware.

The Chemistry

The current Redcode standard, DRAFT94, was
published in REC.GAMES.COREWAR and
implemented in the pMARS software [Ma et al,
1995]. Each memory cell of the “core” consists of
an instruction [Table 1], modifier [Table 2], and
two operands whose interpretation is determined
by their addressing mode [Table 3]. For more
details about Redcode please consult one of the
many introductory documents. Eg. The Beginners
Guide to Redcode [Karonen, 2004] More
information can also be found in the pMARS
documentation.

DAT terminate process

MOV move from A to B

ADD add A to B, result in B

SUB subtract A from B, result in B

MUL multiply A by B, result in B

DIV divide B by A, result in B if
A is not zero, else DAT

MOD divide B by A, remainder in B
if A is not zero, else DAT

JMP execute at A

JMZ execute at A if B is zero

JMN execute at A if B is not zero

DJN decrement B, if B is not zero,
execute at A

SLT skip if A is less than B

SEQ
CMP

skip if A is equal to B

SNE skip if A is not equal to B

NOP no operation

SPL new task at A

Table 1. Valid instructions. Note: Instruction behavior can
depend on execution style: biotic (2004) or abiotic (1994).

.A Instr. read and write A-fields

.B Instr. read and write B-fields

.AB Instr. read A-field of A-
instr. and B-field of B-instr.
and write B-field

.BA Instr. read B-field of A-
instr. and A-field of B-instr.
and write A-field

.F Instr. read both A&B fields of
A&B instr. and write to both
A&B fields (Ato A and B to B).

.X Instr. read both A&B fields of
A&B instr. and write to both
A&B fields (Ato B and B to A).

.I Instr. read and write Instr.,
Modifier, Modes, A & B fields

Table 2. Valid modifiers.

immediate

$ direct

@ indirect using B-field

< predecrement indirect using B-
field

> postincrement indirect using B-
field

* indirect using A-field

{ predecrement indirect using A-
field

} postincrement indirect using A-
field

Table 3. Valid addressing modes.

Seeding the Pool

Each round of the evolution starts out with
seeding the pool, this is done by running the
”makepop” tool. Makepop creates a new
individual from randomly selected Redcode
instructions (the individual's DNA) and then
checks to see if it can pass a test battle against a
random individual from a benchmark set.

The code generated by makepop is seeded from
patterns seen in human coded individuals. The
theory here is to emulate natural organisms. In
nature there are only a limited number of working
combinations of proteins, and the un-workable
proteins are suppressed through various means.

The same is true in Corewar, wherein we want to
maximize the working combinations we see in
"nature" (human coded individuals), and suppress
the random ones that we don't see. To do this, a
system is devised which is based on instruction
distribution tables—called chains in the following
discussion—which are calculated from successful
human coded individuals. A chain might look like:

Start instruction:
 SEQ occurred 69 times (39.884%)
 MOV occurred 49 times (28.324%)
 SNE occurred 23 times (13.295%)
 SPL occurred 17 times (9.827%)
 ADD occurred 7 times (4.046%)
 SUB occurred 3 times (1.734%)
 JMZ occurred 3 times (1.734%)
 DIV occurred 1 times (0.578%)
 NOP occurred 1 times (0.578%)

2nd Instruction:
 If previous instruction was spl:
 SEQ occurred 771 times (60.613%)
 SNE occurred 170 times (13.365%)
 DAT occurred 137 times (10.770%)
 SPL occurred 69 times (5.425%)
 JMP occurred 36 times (2.830%)
 MOV occurred 34 times (2.673%)
 ADD occurred 16 times (1.258%)
 DJN occurred 6 times (0.472%)
 SUB occurred 3 times (0.236%)
 JMZ occurred 1 times (0.079%)

 If previous instruction was djn:
 DAT occurred 128 times (22.980%)
 SEQ occurred 127 times (22.801%)
 JMP occurred 100 times (17.953%)
 MOV occurred 50 times (8.977%)
 SNE occurred 46 times (8.259%)
 SPL occurred 38 times (6.822%)
 DJN occurred 21 times (3.770%)
 ADD occurred 11 times (1.975%)
 JMN occurred 10 times (1.795%)
 SUB occurred 6 times (1.077%)
 MUL occurred 2 times (0.359%)
 JMZ occurred 2 times (0.359%)

patterns are examined up to 5 instructions deep,
which means the fifth instruction will look like:

 If 4 ins ago was spl:
 If 3 ins ago was spl:
 If 2 ins ago was spl:
 If 1 ins ago was spl:
 ADD occurred 1 times (50.000%)
 MOV occurred 1 times (50.000%)

So the fifth instruction would be ADD or a MOV.

In addition to the instruction itself, valid Redcode
has a modifier and operands. These are tied only
to the current instruction to keep look up tables
reasonably sized.

When creating the tables for selecting random
instructions, a group of successful individuals
(obtained from Koenigstuhl's infinite LP hill) is
selected and converted to the format that exhaust
requires. Then a program called statcode.pl is
run. It counts every instruction, tallies all the start
instructions it sees, makes a note of which
instructions follow which instructions, and tallies
which modifiers and operands are seen with any
given instruction. The start instructions are tallied
separately to ensure that all individuals start with
a valid instruction. The program then outputs a C
source file, which is compiled and linked into
makepop and client programs.

The source file defines several calls:

 get_start_instruction
 get_operands
 get_imod
 get_omod
 get_{second,third,fourth,fifth}_instruction

get_start_instruction returns an instruction
selected randomly from the list of valid start
instructions, weighted by the number of
occurrences. So in the above example, one would
expect nearly 40% of our start instructions to be
SEQ, and nearly 10% to be SPL.

The following is a source snippet from makepop.c
showing how an individual is filled using these
chains (c is a pointer to the code section of the
individual):

 getstartins(&(c[0]));
 op = c[0].in;
 getsecondins(&(c[1]),op);
 op2 = c[1].in;
 getthirdins(&(c[2]),op,op2);
 op3 = c[2].in;
 getfourthins(&(c[3]),op,op2,op3);
 op4 = c[3].in;
 getfifthins(&(c[4]),op,op2,op3,op4);
 for(i = 5; i < max_length; i++) {
 getfifthins(&c[i],
 c[i - 1].in,
 c[i - 2].in,
 c[i - 3].in,
 c[i – 4].in);
 }

A second pass would then be made to match each
of the instructions with operands and modifiers.

This method has made a significant difference in
the time required to generate a viable start
population. The instruction calls are also used to
suggest mutations, reducing the chance of
destructive mutations by using possibilities that fit
chains used to generate the individual. Allowing
for a small chance that we will change some part
of the instruction based on the chains that match
the individuals code.

Once the pool is filled with individuals, the server
program master starts. Master reads all the
generated individuals, the benchmark individuals,
then shuffles the generated individuals into
species. The evolver considers a species to be a
group of individuals in the pool that breed only
with other members of their group. The
benchmark typically sits around 6-12 individuals.
When the master is on-line and listening, clients
starts on any available computer. The clients
contact the master, and checks out a section of the
pool for which to calculate scores. Once the client
finishes calculating the initial individual scores, it
returns the information to the server and checks
out another small section.

Once all the individuals have an initial score
assigned, the server begins sending the clients the
completed pool. The clients breed new individuals.
Any new individuals that exceed the score of the
current flimsiest individual in a species are copied
in over that individual, removing it from the pool.

The Evolutionary Process

The "breeding" process selects two individuals of
the same species, one of the parents is chosen to be
the source. After each instruction is copied to the
child, there is a chance the source will be swapped
to a different parent individual, and instructions
will be copied from that parent instead. On
average there are four cross-overs between
parents in each child. As well, there is a chance of
mutation for every instruction, this can take the
form of either a small change to the current
instruction, dropping this instruction completely,
or adding a new instruction. Once the child has
been filled with code, it is validated against a
random benchmark individual to ensure it is
worth the cycles to calculate a full score. If it

passes, it will continue as above, if the child scores
better than the current flimsiest, it replaces it in
the pool.

After the client has found enough improved
individuals, it returns its pool to the server, which
adds the improved individuals to the main pool.
This will continue until someone stops the master,
and the clients exit when they can check-out no
more work.

There is also a simple proxy server, to allow clients
to be run on machines that don't have direct
access to the Internet. The proxy checks out work
(from either the master, or another proxy), and
hands it out to clients that connect to it. Once the
proxy receives enough improved individuals, it
checks them back into the main server, and
requests a new pool.

Master Clients

Proxy Clients

Proxy Clients

It was found that best results are obtained by
starting the validation score very low, and
ramping it up as the baseline score of the
individuals improves. When most individuals are
capable of scoring >50% of the tie barrier (the
score achieved with 100% ties), the validation
score is bumped so only individuals that can
exceed the tie barrier will have their score
calculated. This prevents individuals that have no
strong offensive ability from breeding out all the
very offensive individuals from the pool, as
offensive seem to have a more difficult time
finding improvements. The mutation rate is
started quite high, about 60% chance per
instruction, and is dropped quickly as the
individuals improve. Towards the end, the
mutation rate is typically held somewhere around
2% chance per instruction. If the mutation rate is
not dropped, the mutation rate will cause the pool
to flail around aimlessly and never converge. If
the mutation rate is started too low, there will not
be enough variation in the pool, and it is unlikely
to find optimizations. The typical path of the

evolver is to start with low scores, quickly increase
as we approach the tie barrier, then there is a
significant slowdown after the validation score
bump described above. Once most of the
population starts to shift towards more offensive
individuals, the climb upwards starts again. This
will continue until the pool converges on a
monoculture, where all individuals effectively use
the same tactics, and we no longer find further
improvements. At this point, the pool can be
considered done.

The evolver generally runs several times from a
random start until the pool converges on a
monoculture, then collect the top individuals from
the finished pools into a new pool, and re-run the
evolver hoping for further improvements. This
strategy has proved to be quite successful in the
past. Typically it will take days or weeks to run
each pool to completion using the spare CPU
cycles of a large cluster of commodity PCs.

The Evolutionary Environment

As mentioned earlier all individuals are tested
against a benchmark. The specific individuals in
the benchmark are essential to the evolution of
human competitive programs. It usually contains
a set of the best scoring individuals from
Koenigstuhl’s infinite hill.

If the number of individuals in the benchmark is
too low the evolution quickly reaches a dead-end,
because of the appearance of individuals which
overpower a single individual of the benchmark.
Such individuals, called in the following
“kryptonites”, inhibit further evolution of the
main pool because of their success against the
vulnerable individual in the benchmark. But in all
cases they are not viable in tournament play.

The effect is less pronounced as more individuals
are used in the benchmark. The downside is that
the evolution then needs more computing power
and the time until the pool converges on a
monoculture significantly increases. One can
slightly suppress the kryptonite effect by the
careful choice of different species and sub-species
for an even benchmark.

There are still further approaches in progress how
to break the deadlock provoked by cryptonides
while using a benchmark with a small amount of
individuals.

Evolution and a Step Beyond

An example of the evolutionary process described
in this article is the individual “189602-1978-
xt642-2-eve15”. This program was evolved using
optiMAX’s LP hill benchmark. It showed a very
interesting scoring pattern on SAL’s LP hill.
Although it is a very defensive species it's able to
beat some other defensive species (namely
replicators) quite nicely.

A closer look at the code showed the individual
executes just 8 instructions. The remaining 192
lines are not in use and seems to act as a huge
decoy. The 'active' part of the individual, with
some additional comments, is shown below:

mov.i $ 7 , { 2 ;boot the imp
spl.a $ 5 , # 1867 ;split behind impgate
spl.ab $ 2317 , $ 931 ;launch booted imp
djn.a # -1 , < -145 ;imp-gate / djn-train
djn.f # -1 , < -145 ;
jmp.ba # 21 , < -43 ; ->safety instr.?
mov.b # 2667 , $ 8 ;useless instruction
mov.i # -1 , $ 1 ;the imp instruction

As unique the scoring pattern is as interesting is
the evolved species, because it contains just two
imps and an imp-gate. On a deeper view it unfurls
a quite barbaric brilliancy: A strategy which was
never seen in a human coded individual before.
Both imps are running fast enough to being not
caught by a coreclear or a scanner wipe on their
way through the core. And if they overwrites an
opponent they convert it into an imp. And they are
even fast enough to catch the papers while still in
process of replicating themselves. At the end of all
this waits the imp-gate terminating every imp that
approaches. This means if the two imps were able
to convert all processes of the paper into imps
while running through the core the paper will lose.

The next step after understanding the species was
to write a human coded version. For some
additional points a quick scanner was added which
works also as a decoy; the code is at right:

;redcode-lp
;name Eve 15
;strategy No humans were used in the creation
;strategy of this strategy
;author bvowk + Fizmo
;assert 1

;------>qscan constants
zero equ qbomb
qtab3 equ qbomb
qc2 equ ((1+(qtab3-qptr)*qy) %
 CORESIZE)
qb1 equ ((1+(qtab2-1-qptr)*qy) %
 CORESIZE)
qb2 equ ((1+(qtab2-qptr)*qy) %
 CORESIZE)
qb3 equ ((1+(qtab2+1-qptr)*qy) %
 CORESIZE)
qa1 equ ((1+(qtab1-1-qptr)*qy) %
 CORESIZE)
qa2 equ ((1+(qtab1-qptr)*qy) %
 CORESIZE)
qz equ 2108
qy equ 243

;------>qbomb constants
qoff equ -87
qstep equ -7
qtime equ 14

;------>eve 15 constants
iAwa equ 4174
train equ 7903

;------>eve 15 code
pGo mov.i imp, *2
 spl imp
 spl iAwa
 djn.a #0, <train
 djn.f #0, <train
 jmp.ba #0, <train
imp mov.i #-1, 1

 for 51
 dat 0, 0
 rof

;------>qscan code
qbomb dat >qoff, >qc2
 dat 0, 0
 dat 0, <qb1
qtab2 dat 0, <qb2
 dat 0, <qb3
 for 16
 dat 0, 0
 rof
 dat zero - 1, qa1
qtab1 dat zero - 1, qa2
 for 42
 dat 0, 0
 rof

qgo sne qptr+qz*qc2, qptr+qz*qc2+qb2
 seq <qtab3, qptr+qz*(qc2-1)+qb2
 jmp q0, }q0

 sne qptr+qz*qa2, qptr+qz*qa2+qb2
 seq <qtab1, qptr+qz*(qa2-1)+qb2
 jmp q0, {q0

 sne qptr+qz*qa1, qptr+qz*qa1+qb2
 seq <(qtab1-1), qptr+qz*(qa1-1)+qb2
 djn.a q0, {q0
 sne qptr+qz*qb3, qptr+qz*qb3+qb3

 seq <(qtab2+1), qptr+qz*(qb3-1)+(qb3-1)
 jmp q0, }q1
 sne qptr+qz*qb1, qptr+qz*qb1+qb1
 seq <(qtab2-1), qptr+qz*(qb1-1)+(qb1-1)
 jmp q0, {q1

 sne qptr+qz*qb2, qptr+qz*qb2+qb2
 seq <qtab2, qptr+qz*(qb2-1)+(qb2-1)
 jmp q0

 seq >qptr, qptr+qz+(qb2-1)
 jmp q2, <qptr

 seq qptr+(qz+1)*(qc2-1),
 qptr+(qz+1)*(qc2-1)+(qb2-1)
 jmp q0, }q0

 seq qptr+(qz+1)*(qa2-1),
 qptr+(qz+1)*(qa2-1)+(qb2-1)
 jmp q0, {q0

 seq qptr+(qz+1)*(qa1-1),
 qptr+(qz+1)*(qa1-1)+(qb2-1)
 djn.a q0, {q0
 jmz.f pGo, qptr+(qz+1)*(qb2-1)+(qb2-1)

;------>qbomb code

q0 mul.b *2, qptr
q2 sne {qtab1, @qptr
q1 add.b qtab2, qptr
 mov qtab3, @qptr
qptr mov qbomb, }qz
 sub #qstep, qptr
 djn -3, #qtime
 jmp pGo

 end qgo

Conclusion

The “brittleness” of Corewar's Redcode has
prevented significant evolution of competitive
Redcode programs in the past. With advances in
computer hardware and by seeding initial
populations of evolving programs with patterns
seen in human coded individuals, we can
significantly decrease the time required to
generate a viable start population. Also the use of
a dynamic validation score and mutation rate
during the "breeding" process assists the pool's
convergence on a human competitive monoculture.
Together with a well chosen benchmark it is now
possible to efficiently evolve new and unique
“species” that are effective in tournament play.

Acknowledgments

We are very grateful to Joonas Pihlaja, John
Metcalf and Will 'Varfar' for all their ideas. A
special thanks to Joonas for repeatedly rewriting
exhaust to suit our whims.

References

Adami, C. and Brown, T. 1994. Evolutionary
Learning in the 2D Artificial Life System 'Avida'.
In Brooks, R. and Maes, P. editors, Artificial Life
IV, 377-381. Cambridge, MA: MIT Press.

Birk, C.C. 2004. Koenigstuhl. On the web at:
http://www.ociw.edu/~birk/COREWAR/koenigstuhl.html

Dewdney, A.K. 1984. In the game called core war
hostile programs engage in a battle of bits.
Scientific American, 250:14–22.

Hendrix, R; Smith, MCM; Burns, RN; Ford, ME;
Hatfull, GF. 1999. Evolutionary relationships
among diverse bacteriophages and prophages: All
the world's a phage. PNAS, 96(5):2192-2197.

Karonen, I. 2004. Beginner's guide to Redcode.
On the web: http://vyznev.net/corewar/guide.html

Ma, A.; Sieben, N.; Strack, S.; and Wangsaw, M.
1995. PMars. Software on the web at:
http://www.koth.org/pmars

Pedulla, ML; Ford, ME; Houtz, JM; Karthikeyan,
T; Wadsworth, C; Lewis, JA; Jacobs-Sera, D.;
Falbo, J; Gross, J; Pannunzio, NR; Brucker, W;
Kumar, V; Kandasamy, J; Keenan, L; Bardarov,
S; Kriakov, J; Lawrence, JG; Jacobs, WR;
Hendrix, RW; Hatfull, GF. 2003. Origins of
Highly Mosaic Mycobacteriophage Genomes.
Cell, 113(2):171-182.

Pihlaja, M.J. 2004. New KOTH server. Usenet
post in REC.GAMES.COREWAR on the web at:
http://groups.google.com/groups?th=1f82856630ed460d

Ray, T.S. 1992. An approach to the synthesis of
life. In C. G. Langton, C. Taylor, J.D. Farmer,
and S. Rasmussen, editors, Artificial Life II , 371–
408, Redwood City, CA, Addison-Wesley.

Rasmussen, S.; Knudsen, C.; Feldberg, R; and
Hindsholm, M. 1990. The Coreworld: Emergence
and evolution of cooperative structures in a
computational chemistry. Physica D, 42:111–134.

Zapf, S.; Schmidt C. 2004 optiMAX. Software on
the web at: http://www.corewar.info/optimax/

